

The Ice Core Dating Problem

- 1. Climate \rightarrow atmospheric chemical proxies
- 2. Precipitation on ice sheet \rightarrow annual layers in proxies
- 3. Seasonal proxy depth-series \rightarrow chronology (what we infer)
- 4. Chronology \rightarrow past climate conditions (what scientists want)

Manual layer counting is arduous $[1] \rightarrow$ automate with uncertainty!

Our contribution

- A series of models for ice core dating
- Implemented using probabilistic programming languages
- (PPLs) for fully automatic inference

Graphical model

Hidden Markov model (HMMs) with latent time values, t_{δ_i} , indexed by discrete depth values δ_i

github.com/infprobscix/icecores

Ice Core Dating using Probabilistic Programming

Aditya Ravuri¹ Tom R. Andersson^{*2} Ieva Kazlauskaite¹² Max Fryer¹ J. Scott Hosking²³ Neil D. Lawrence ¹ Markus Kaiser¹² Richard E. Turner ¹ Mark Girolami ¹ ¹University of Cambridge ²British Antarctic Survey ³The Alan Turing Institute

Discrete domain and index: Classical HMMs

Transitions: $t_{\delta_i} | t_{\delta_{i-1}} \sim Categor$ Observations: $s_i | t_{\delta_i} \sim \mathcal{N}(a \cos(2\pi t_{\delta_i}) + b, \sigma^2)$

Transition matrix $P = \begin{bmatrix} \times \times & 0 & \dots \\ 0 & \times & \times & \dots \\ 0 & 0 & \times & \dots \end{bmatrix}$

with $t_{\delta_i} \in \{1/12, 2/12, ...\}$, ensuring t_{δ_i} is monotonically increasing.

Hierarchical observation model

- Allow for parameters a, b in (2) to change with each data point with a hierarchical prior placed over a_i, b_i .
- Latent parameters (a_i, b_i) must be marginalized. MCMC is expensive, so we use variational inference (VI).
- Dated volcanic events can be incorporated, constraining the depth-time mapping.

$prical(P_{t_{\delta_{i-1}}})$	(1)
<i>v vi</i> -1	

- (2)
- (3)

Discrete domain and continuous index: Cts-HMMs

- data section with *bimodal* latent posterior:

Future work: An extension to SDEs

Depth & time both continuous \rightarrow stochastic differential equations. For example, with monotonic sample paths:

$$\begin{bmatrix} dz_{\delta} \\ dt_{\delta} \end{bmatrix} = \begin{bmatrix} -\theta z_{\delta} \\ -\mu^+(z_{\delta}, t_{\delta}, \delta) \end{bmatrix} d\delta + \begin{bmatrix} \sqrt{2\theta} \\ 0 \end{bmatrix} d\mathbf{W}_{\delta}.$$

The Promise of Probabilistic Programming

Probabilistic programming languages promise to enable automatic inference and fast model prototyping, while ensuring maintainability.

In practice, inference is only possible in limited model classes, and some forms of inference are not scalable.

[1] Mai Winstrup.

arXiv 2210.16568

100

Continuous depth index $\delta_i \rightarrow$ continuous index Markov process:

 $\mathbb{P}(t_{\delta_i}|t_{\delta_{i-1}}) = \exp\left((\delta_i - \delta_{i-1})\mathbf{Q}\right).$

With transition rate matrix \mathbf{Q} , can capture uncertainty over a missing

A hidden markov model approach to infer timescales for high-resolution climate archives. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI'16, 2016.

ar847@cam.ac.uk