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The Ice Core Dating Problem

1. Climate → atmospheric chemical proxies

2. Precipitation on ice sheet → annual layers in proxies

3. Seasonal proxy depth-series → chronology (what we infer)

4. Chronology → past climate conditions (what scientists want)

Manual layer counting is arduous [1] → automate with uncertainty!

0 5 10 15
depth (m)

lo
g 

co
nc

en
tr

at
io

n

Our contribution

A series of models for ice core dating

Implemented using probabilistic programming languages

(PPLs) for fully automatic inference

Graphical model

Hidden Markov model (HMMs) with latent time values, tδi
, indexed

by discrete depth values δi
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Discrete domain and index: Classical HMMs

Transitions: tδi
|tδi−1 ∼ Categorical(Ptδi−1

) (1)

Observations: si|tδi
∼ N (a cos(2πtδi

) + b, σ2) (2)

Transition matrix P =

× × 0 . . .
0 × × . . .
0 0 × . . .

 , (3)

with tδi
∈ {1/12, 2/12, ...}, ensuring tδi

is monotonically increasing.

Hierarchical observation model

Allow for parameters a, b in (2) to change with each data point

with a hierarchical prior placed over ai, bi.

Latent parameters (ai, bi) must be marginalized. MCMC is

expensive, so we use variational inference (VI).

Dated volcanic events can be incorporated, constraining the

depth-time mapping.
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Discrete domain and continuous index: Cts-HMMs

Continuous depth index δi → continuous index Markov process:

P(tδi
|tδi−1) = exp ((δi − δi−1)Q) .

With transition ratematrixQ, can capture uncertainty over amissing

data section with bimodal latent posterior:
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Future work: An extension to SDEs

Depth & time both continuous → stochastic differential equa-

tions. For example, with monotonic sample paths:[
dzδ

dtδ

]
=
[

−θzδ

−µ+(zδ, tδ, δ)

]
dδ +

[√
2θ
0

]
dWδ.

The Promise of Probabilistic Programming

Probabilistic programming languages promise to enable auto-

matic inference and fast model prototyping, while ensuring main-

tainability.

In practice, inference is only possible in limited model classes, and

some forms of inference are not scalable.
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